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Abstract. A classical pseudo-spin model in one dimension is considered, representing a 
variation on the Frenkel-Kontorova model to include non-convex interactions, resulting 
in three competing length scales. An exact algorithm is used numerically to determine the 
classical ground state as a function of a chemical potential. Approximate arguments suggest 
that only a first-order transition should occur. However, when the lengths are not rationally 
related, it is found that the mean lattice spacing appears to vary as a devil’s staircase. The 
plateaux of the staircase correspond to locking to incommensurate structures while there 
is no locking to the commensurate ones. Most of the locking values observed numerically 
belong to a series which can be analytically calculated on the basis of simple topological 
hypotheses which are also consistent with numerical observations. 

1. Introduction 

The physical problems which have motivated the present work are those with competing 
interactions, which in general induce incommensurate periods. It has now become 
widely recognised (see, e.g., Aubry 1983a) that such problems are prevalent in con- 
densed matter physics and there are numerous experimental ‘observations’ of incom- 
mensurate structures and commensurate-incommensurate (c-IC) transitions, e.g. in 
ferroelectric, magnetic, physi-absorption and charge-density-wave materials. The 
simplest description of incommensurate structures is based on a model in one space 
dimension introduced by Frenkel and Kontorova ( FK) (or straightforward modifica- 
tions); see equation (1.1) below. However, it is known that the FK model, treated in 
mean-field theory, predicts only continuous c-IC transformations, whereas many experi- 
mental observations suggest weakly first-order transitions. 

There are a number of variations on the FK model which may be important. 
However, here we focus on the influence of non-convex interparticle interactions. The 
standard FK model includes only convex interactions which always lead to simple 
ground states, either c or IC (Aubry 1983a, b). In general there is no reason to limit 
ourselves to pure convexity: oscillatory interactions are quite typical as RKKY coupling 
in magnets ; non-convex coupling will also arise through interactions between domain 
walls or strain-mediated interactions, etc (see, e.g., Villain and Gordon 1980). 

Non-convexity qualitatively changes predictions of the FK model. It has been 
argued (e.g. Villain and Gordon 1980, Axel and Aubry 1981) that first-order transitions 
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3158 S Aubry, K Fesser and A R Bishop 

will be induced. These arguments are in a sense equivalent to replacing the periodic 
potential by a constant one. We have found that the situation is typically even more 
complicated and may include a non-trivial order which we term ‘weakly periodic’ 
(Aubry 1980, 1983a). (Such an ordering is known elsewhere in mathematical physics, 
e.g. the problem of tiling a two-dimensional plane (Gardner 1977, MacKay 1983). 
Similar orderings may be expected in the models considered by KlCman and Sadoc 
(1979).) 

Since the general problem of competing and non-convex interactions will turn out 
to be extremely complex, it is useful to focus on a simple model which contains the 
essential ingredients. We have used the one-dimensional FK model with free energy 

N 

F =  c {V(UZ)+ W ( U , + , - U , ) - P ( U , - u o ) }  (1.1) 
1 = 1  

where W is the interaction potential, e.g. f ( ~ , + ~ -  U, - a ) 2  in a convex case. In (1.1) 
{i} label particles with displacements (or rotations, etc) {U,} and p is a chemical 
potential. For the local potential V we take 

V( U )  = cos U (1.2) 

but of course many other choices are possible. In particular we have also considered 

V(U) = ( 1  -$cos u)-I (1.3) 

which contains higher harmonics but is otherwise similar to equation (1.2). Turning 
to the form of non-convex interaction which we will superimpose on (l.l),  we suppose 
that the simplest case is that of a double well, i.e. with two potential minima and one 
intervening maximum: when particles visit either minimum the potential is locally 
convex. However, when passing between minima, non-convexity is experienced. To 
simplify this situation even further we have considered the limit of a very high potential 
barrier and idealised the interparticle interaction W in (1.1) as a pure Ising form: 

(1.4) 

Here 1, and l2 are the locations of the consecutive minima. As remarked earlier, (1.4) 
might typify oscillatory interactions between domain walls (as in ANNNI models (Villain 
and Gordon 1980), the effect of a discrete lattice which provides a nonlinear Peierls- 
Nabarro pinning potential for walls (Aubry 1983a)), etc. Non-Ising interaction poten- 
tials are expected to retain the same thermodynamic phases, but walls will be less 
narrow, transitions may be smoother, and phases less locked. 

We have investigated the mean-field (‘ground state’) properties of the problem 
(1.1)-(1.4) both analytically ( 9  2 )  and numerically (§ 3). Since the results are quite 
complicated, we briefly summarise them here: (i)  usual approaches with constant 
distances between walls predict a single first-order transition (Villain and Gordon 
1980). In fact, in the present case, we have typically found many intermediate phases; 
(ii) the average separation between phases appears to form a ‘devil’s straircase’ (Aubry 
l980,1983a, b) ; (iii) the plateaux of the staircase occur at incommensurate concentration 
valuest characterised by the two lengths, I, and Z2, and the period of the local potential 
V ( u ) ,  i.e. three lengths. All of the IC configurations are locked. (The very large 
Peierls-Nabarro lattice pinning barrier, implied by our use of an Ising approximation 

U,,, - U, = 1, or 1,. 

t We emphasise that this mechanism for locking is different from that described by Aubry et a1 (1984) as 
a ‘subcommensurability’ effect. 
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(above), implies strong locking of metastable states); (iv) on the basis of an empirical 
analysis, motivated by our numerical results, we can ( 0  2) predict the locations of most 
of the observed plateaux. Small first-order transitions are not excluded (either analyti- 
cally or numerically) but a single isolated first-order transition is definitely excluded 
in the general case; (v) a simple degenerate case is when both I ,  and I ,  are rational 
with respect to the period of V ( u ) .  Then a finite number of transitions occur, all of 
which are first order. 

2. Analysis 

Our analysis is motivated by several assumptions which were suggested by our numeri- 
cal observations ( 0  3). 

First, we assume that each ground state which corresponds to an observed plateau 
of the curve 1(p)  is such that the set of coordinates ui, modulo the potential period 
27~, is uniformly dense on a finite set I of intervals (which we refer to as ‘bands’). 
Second, we assume that the transformation 

T ( u J  = 4 + 1  mod 277, (2.1) 

which maps a dense subset of points of I onto itself, is continuous except at a finite 
number of points which have their images at band edges. Therefore this transformation 
T is uniquely defined by continuity for all points of I. It follows from the definition 
of the model that T(u) is either a translation by I ,  mod 2 ~ r  or by l2 mod 2 7  and thus 
T(  U )  is measure-preserving. Since the trajectory ui = Ti( uo) is dense on I, this transfor- 
mation does not overlap the intervals of I with each other and is invertible except 
at a finite number of points (‘band edges’). Finally, we assume that it is possible to 
consecutively ‘glue’ all the left and right band edges by pairs (see figure l),  such that: 

(i)  the topology of the set of intervals I becomes that of a unique circle %’; 
(ii) the transformation f, which corresponds to T, on this circle (e be continuous. 

Since T is measure-preserving, ?. is necessarily a rotation on %‘. (This assumption is 

T 

Figure 1. Schematic graph for a possible five-band structure. The five intervals are ‘glued’ 
together to form a circle. C, corresponds to Bs and A, which are glued with each other, 
C, to B ,  _and A,, and so on. The length of the arc CC, is m, C,C, is m, etc. A 
rotation T on the circle corresponds to the initial map T which exchanges the intervals. 
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not a consequence of the previous one because there exist examples of transformations 
which exchange intervals and are measure-preserving but which cannot be transformed 
into a rotation; see, e.g., Katok and Stepin (1967).) 

A set of intervals which fulfils all these conditions is called a one-circle band 
structure. 

Typical numerical observations of band structures which suggested the above 
assumptions are shown in figure 4. The distribution of the sequence { U ,  mod 27r) as 
a function of the index i exhibits a one-band structure on the first figure and a three-band 
structure in the second one. These band structures are explicitly calculated in 
appendix 1. 

The analytic justifications for our assumptions are not discussed in the present 
paper. At the present stage of our work, they are useful hypotheses which allow one 
to interpret many observed plateaux in the average distance I (  p )  = ( u ! + ~  - U , ) .  However, 
it is probable that there also exist plateaux which are related to more complex band 
structures which cannot be reduced to a rotation on a circle but their investigation is 
somewhat more complex. Nevertheless, we can understand intuitively that, if band 
distributions for the coordinates U ,  are concentrated close to the minima of the potential 
V ( u ) ,  they are quite favourable for a good minimisation of the total energy of the system. 

Our assumptions must be compatible with the constraining condition, that for any 
x in Z, we have 

T ( x ) - x = l ,  or I 2  mod 27r. ( 2 .2 )  

The analysis of this compatibility condition yields necessary and sufficient conditions 
for the existence of one-circle band structures. We also find that the configurations v 
which correspond to these band structures are incommensurate with a mean distance 
( U , + ,  - U,) = I ,  and a modulation wavevector w,. In addition, the values of I ,  and w,  
must belong to a discrete series of numbers which we explicitly calculate. It should 
be noted that most values of l ( p )  at which a plateau is observed (particularly at the 
most important ones) indeed belong to this series I,. In addition, we will check that 
the corresponding configurations have the expected properties and particularly that 
its wavevector modulation belongs to the series of U,. However our analysis, which 
does not involve any details about the shape of the potential V( U )  except the fact that 
it is periodic, does not prove that a possible band structure necessarily corresponds 
to a plateau of I ( p ) ,  and if this plateau indeed exists the width in p is not predicted. 

We now derive the topological conditions on the band structure I. To fix the idea, 
we assume (without any loss of generality) that 

0 < I ,  < l2  < 2 7 .  (2 .3a )  

Then we define 

6 = l2 - I , .  ( 2 . 3 b )  

We assume only that there exist no integer solutions (n,, n2, n )  for the equation 

n , l ,  + n,12 = 2n.n (2.4) 

with n ,  and n2 both of the same sign. Let us call [ A , & ] ,  [ A J ? , ]  . . . [ A J ? , ]  the N 
non-overlapping consecutive intervals of the set Z on [0,2.n]. By definition, the A, 
are the left band edges and the B, the right band edges of these intervals in order that 
the algebraic length A,B, be always positive. 
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According to the above assumptions, it is possible to 'glue' the intervals [A ,B , ]  to 
form a circle with length @ which is the total of the interval width Z E l  m. Figure 1 
illustrates, through an example with five intervals, how these intervals could be glued 
in order to form the circle (e. The initial order of these intervals in I is generally 
interchanged and becomes 

where { k,} is a permutation on the integers 1 S i S n. By definition, ( Bk,Ak2)( Bk2Ak3) 
. . . (Bkh- ,Ak l r ) (Bk ,Ak l )  are the pairs of band edges which are 'glued'. Their images 
are called C1, C 2 , .  . . , CN, respectively, on the circle %. 

Let us now consider a point C, on the circle (e. There necessarily exist some integer 
m such that 

f m ( C i )  + C, for all j .  (2.5) 
Indeed, if for all m there existed 1 S j ,  s N such that f m (  C,)  = CJm, there would also 
exist a periodic cycle for f because the set of C, is finite. Consequently T would also 
have periodic cycles but this is impossible because (2.4) has no integer solutions. 
Therefore, for the initial transformation T, we necessarily have some point P which 
is not a band edge and such that 

T " ( A k , )  = T"(Bk,_,)  = p mod 277. (2.6) 
Because of (2.21, there exist two positive integers nA and n,, both smaller than m, such 
that 

Ak,P= [ n A l l +  ( m  - n A ) l 2 1  mod 21r ( 2 . 7 ~ )  
- 

and 
- 
B k , P  = nBll + ( m  - n B )  121 mod 21r (2.7b) 

which implies that there exists an integer n, = nA - n, with 

Bk; - I  Ak; mod 27r = n,8 mod 277. 

For each C,, this associated integer n, gives the width of the gap which has been shrunk 
in order to glue the corresponding points Bk,_, and Ak, of I.  It is now more convenient 
to consider, instead of the set of intervals [ A , B , ] ,  an infinite set I'  of intervals [ A i B : ]  
which is equivalent modulo 257 to I but which is also periodic, and for which the 
intervals are in the same order as on the circle Ce. These intervals are defined for 
l S i < N b y  

A : B :  = Ak,Bk, (2 .9a)  

B : - , A :  = n,6. (2.9b) 
This definition implies, by using (2.8), that for i = N + 1 there necessarily exists an 
integer q such that 

-- 

BLA:  = n,6 -21rq. ( 2 . 9 ~ )  

Then the sequence of intervals [ A : B : ]  can be defined for all i. The initial sequence is 
repeated periodically with the definition: 

(2.9b) 

in order that (2.9b) is true for all i. By definition, on the circle (e, the sequence of 

-- 
A : A : + ,  = B : B : + ,  = 2779 
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points C, which correspond to (B:-,, A : )  is periodic with period N as well as the 
associated sequence of integers n,:  

c,+ w = c, (2.10a) 

n,+N = n,. (2.10) 

With this definition, the coordinate of a point X on the real axis belonging to this set 
I' is easily related to the angular coordinate of its image x on the circle (e. Let 0 and 
R be the corresponding origins on the real axis and on the circle (e. To fix ideas we 
suppose that 0 belongs to the interval [ A i  B i ]  and that 0 <ox < 27rq. Then X belongs 
to an interval [ALBA] such that n s rn s N. We write 

O X  = OB;  + BLA;,, + A ; + , B ; - ,  + . . . + A k - , E L - ,  + BL-,AL + A k X  ( 2 . 1 1 ~ )  

which becomes, by using (2.96), 

- - ~  

(2.1 1 b )  

The sum 

is made with all the points C, in the arc 2. This formula readily extends to situations 
where is larger than 27rq. Then the arc Rx which could 
be longer than the length of the circle has to be considered as algebraic. In addition, 
the indiEs n, have to be counted with their order of multiplicity (the number of times 
the arc passes over the point C,) and a sign which corresponds to the direction of 
the arc Rx on the circle %. 

The net result is that the algebraic distance between two points 0 and X on the 
real axis is just equal to their angular distance on the circle (e plus the gap widths 
which are passed through in going from 0 to X .  Formula (2.11b) is the basic 
relationship from which we determine: (i) the length of the circle %; ( i i )  the rotation 
length 8 of f ;  and (iii) the concentration c of bounds Z2 in the corresponding 
configuration which yield the mean distance 

is negative or where 

(U,,, - U,) = (1 - c ) l ,  + cl2. (2.12) 

We next obtain necessary conditions expressing the compatibility between the initial 
assumptions by showing: ( a )  that the length @ of the circle which is the total bandwidth 
of 1 is necessarily between 0 and 27r; ( b )  that the rotation length 8 of f corresponds 
to a translation on the real axis by only two possible lengths, I ,  or I,; and (c) that the 
concentration c of bounds l2 is between 0 and 1. These conditions force the set of 
possible values for @, and 0 and c to be discrete. Reciprocally, it is shown next that 
when these conditions are fulfilled, there exists a band structure I with a map T' which 
satisfies condition (2.2). 

2.1. Total bandwidth @ 

We consider two points A and A' in the set I' which are separated by 27rq. They are 
represented by the same point on the circle but the corresponding arc G' is just equal 
to the total circle length @. Formula (2.11) yields 

@ = 2rrq - p s  ( 2 . 1 3 ~ )  
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where the algebraic integer p is defined by 
N 

p = C  n,. (2.1 3 b) 
i = l  

Since the intervals in the initial interval do not overlap, we necessarily have 0 < 4 < 257, 
which implies 

q = Int( 5) + 1 .  (2.13 c )  

(Int(x) is the integer part of x, i.e. the largest integer smaller than or equal to n.) The 
possible lengths of the circle are determined by a unique integer p .  

2.2. Rotation length e 
We now consider a point A in I '  and its image T ( A )  in I' which is at a distance I ,  or 
12 ,  mod 257. On the circle, the correspon_ding points Q and a'= f( a) are separated by 
6 which we call the rotation length of T. Formula (2.11b) yields 

( 2 . 1 4 ~ )  

Since 61257 is irrational, there exists a unique pair of integers r and s such that 

6+s6=l l+2r57  (2.14b) 

and another unique pair. r' and S I ,  such that 

e + s ' 6  = 12+2r'7r. ( 2 . 1 4 ~ )  

(Since 6 = ( I 2 -  11), ( 2 . 1 4 ~ )  and (2.146) are compatible, with S I =  s +  1 and r = r'.) 
Consequently (2.14) implies that for any point Q on % 

1 n , = s o r ( s + l )  (2.15) 
c € e ? T e  

and then the rotation length 6 necessarily has the form 

6=11+2r7r - sS  

where r and s are integers, 

(2.16) 

2.3. Conjiguration hull functions 

We now define a function h that will allow us to describe the initial configuration {ui} 
which was supposed to be dense mod 257 on the set I. This function h(x)  is defined 
by the equality 

(2.17a) 

It is the sum of the indices of the points C, which belong to the arc G. It is readily 
established from (2.11) that h(x)  has the property 

h(x+257) = h(x)+p.  (2.17b) 
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It is thus convenient to also define the periodic function g with period 271, 

( 2 . 1 7 ~ )  

and the function 

U ( X )  = h ( x  + w )  - h ( x )  - S. ( 2 . 1 8 ~ )  

Earlier we defined 

w = 2718/@ (2.186) 

as the rotation number of f. It can be shown from ( 2 . 1 7 ~ )  that 

(2.19) 

which, when compared with (2.15), implies that ~ ( x )  can take only two values, 0 or 
1.  In addition, because of (2.17b), a ( x )  is periodic with period 271. 

The coordinates of the initial configuration {ui} are represented by a sequence of 
coordinates ai = a,+ i8 on the circle %’. Using equalities (2.19) and (2.14b), we find 

u , + ~  - U, = 1, + u ( i w  + p ) S  (2.20) 

where p = 271ao/@. Because of (2.18a), the configuration {U,} is described by the 
function h : 

(2.21a) ui = i(ll - s S ) + [ h ( i w  + p )  - h ( p ) ] S +  uo 

or equivalently 

u , - - u o = f ( i w + P ) - f ( P )  (2.21b) 

where f ( x )  is the ‘hull’ function of the configuration {U!} defined as 

(2.21c) 

The forms (2.21b) and ( 2 . 2 1 ~ )  show that the configuration {ui} is modulated by the 
periodic function g(x) and is an incommensurate structure. The average distance 
between consecutive coordinates, 

1 = (Ui+, -U<} = I ,  - ss +pw8/271,  (2.22a) 

corresponds to the concentration of bounds 1,: 

c = (pw/2n)  - s. (2.226) 

The wavevector of the modulation is the rotation angle of f given by (2.186). 
Now, we have to check that this concentration of bounds 1, lies between 0 and 1 .  

This condition expresses the fact that it is possible to find 8, i.e. two integers r and s 
such that ( 2 . 1 4 ~ )  is fulfilled for any a. The inequalities O <  c < 1 become, with (2.18b) 
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and (2.2261, 

&- ( q  -E) < qs -pr < 2. PI 
271. 25r 

(2.23) 

We note that the difference between the left and right numbers in (2.23), q-p6/25r, 
is smaller than 1 because of ( 2 . 1 3 ~ ) .  Then, since ( q s  - p r )  is an integer, we must satisfy 
both equalities 

qs - p r  = Int(pl,/25r) (2.24a) 

and 
qs-pr=  Int(pl2/25r)-Int(p6/25r). (2.246) 

The set of equalities (2.24a) and (2.246) is equivalent to ( 2 . 2 4 ~ )  and ( 2 . 2 4 ~ ) :  

Int( p12/25r) - Int( p1,/25r) = Int( p (  I ,  - 1,)/27r). ( 2 . 2 4 4  

Therefore, a necessary condition to have a N-band structure with E:, n, = p  is that 
two out of the three conditions (2.24) are fulfilled with q given by ( 2 . 1 3 ~ ) .  

The conditions (2.24) are also sufficient to build a one-circle band structure with 
X , = ,  n, = p. The proof of the existence of such a band structure is straightforward. 
Suppose that we have four integers p ,  q, r, s which fulfil the above conditions. Then 
0 and 0 are determined by (2.13a) and (2.16). We define a set of intervals I with Ip( 
equal and equidistant intervals. Each interval has the length 4 / l p l  and the gap between 
two consecutive intervals is 257 - 4 / l p l .  On the associated circle, which corresponds 
to these intervals, the Ipl points C, are equidistant with a constant index, namely 
n, = sgn p = i l .  With the angle 0 defined by (2.16), an arc of length 0 contains either 
s or (s + 1 )  points C, since Int( 0 l I p l ) )  = s, using the definitions of p ,  q, r, s. Therefore 
equation (2.15) is fulfilled. Considering the non-overlapping intervals [A,, B , ]  on the 
real axis with A, = i ( 4 / l p l + 6 ) ,  B, = i ( + / / p ( + S ) + ( d / ( p l )  ( m o d 2 r ) ,  the transforma- 
tion T ' ,  corresponding to the rotation on the circle %, is then given by a translation 
by either I ,  or l2  (see equation (2.2)). It is also clear that this construction is not unique 
since it is possible to move the points C, on the circle in some neighbourhood of the 
initial positions and still satisfy condition (2.15). The potential V ( x )  will determine 
a band structure among the possible ones, minimising the total energy of the chain. 

In conclusion, we have shown that for each set of integers p ,  q, r, s fulfilling ( 2 . 1 3 ~ )  
and (2.24), there exists one-circle band structures and vice versa: each one-circle band 
structure is'associated with such a set of number p ,  q, r, s. Then the corresponding 
configurations are incommensurate and describe by a hull functionf(x), (2.21 b) ,  which 
is piecewise constant with g(x), (2.21c), periodic with period 25r. 

Because of condition (2.24a), the concentration of bounds 1, can be rewritten as 

N 

(2.25a) 

and only depends on the integer p .  The wavevector of the modulation is given by 
(2.186) as 

I ,  + 2 r r  - s6 
w=25r 

25rq - p a  . (2.256) 

w needs to be determined only modulo 297. We note that if r and s are integer solutions 
of (2.24), r' = r + q and s '  = s + p are also integer solutions but then w is changed by 
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27r, which is an equivalent solution. It is then sufficient to seek the solutions of (2 .24)  
where, for example, we have 

o <  s <  lp1. (2 .26)  

Note that when p and q are relatively prime, there is always a unique solution to 
equation ( 2 . 2 4 a )  under the condition (2 .26) .  If equation ( 2 . 2 4 b )  is also fulfilled then 
the wavevector w is uniquely defined by equation ( 2 . 2 5 b )  and depends only on p .  On 
the other hand, there is a finite probability that equations (2 .24a,  b )  are fulfilled with 
p and q not relatively prime. In such cases the wavevector could be reduced from w 
given in ( 2 . 2 5 b ) .  To see this consider the largest common divisor, K ,  of p and q and 
define the relatively prime numbers po( = p/  K )  and qo( = q /  K ). Then the set of solutions 
( r ,  s)  to equation ( 2 . 2 4 ~ )  can be obtained from one solution ( ro ,  so): 

si = so + ipo 

ri = rc+ iq, (integer i )  
(2 .27)  

There are K solutions (2 .27)  fulfilling (2 .26) .  Consequently, there are K possible 
wavevectors wi  defined by ( 2 . 2 5 b ) :  

w i = w o + 2 7 r i / K  i =  1 , .  . . , K .  (2 .28)  

Very interestingly, in this situation we have found numerically (see 9 3 )  that the function 
~ ( x )  (and any related periodic function) is periodic with the reduced period 2 7 r / K .  
If this is always the case, we may quite generally define the fundamental wavevector 
Q by 

I ,  + 2 xro - soS 
Q = 2 7 r  

2%-PoS 

where po  and qo are defined above and satisfy 

qoso-Poro= In t (p l , ) lK  

0 so< I Pol. 

(2 .29)  

(2 .30)  

We prove in appendix 2 that there exists an infinite sequence of pi for which 
conditions (2 .23)  are fulfilled. The density of these integers is exactly ( 3 / 7 r 2 ) ( ( 3 )  = 
0.355 38 ,  which is approximately found by numerical tests ( 2 0 . 3 7  * 0.01). In addition 
the corresponding values of C, given by ( 2 . 2 5 ~ )  are found to be dense on the interval 
[ 0 , 1 ]  (but not with a uniform density) because the sequence of points ( p,ll/27r, p iS /27r)  
is dense on the triangle ( ( O , O ) ,  (0, l ) ,  ( 1 ,  1 ) ) .  

In the next section, we numerically investigate the plateaux of l ( p )  and the 
corresponding configurations. In many cases we identify a corresponding set of 
numbers (p,  q, r, 5 )  and thus a one-circle band structure. Then we can exhibit simple 
hull functions ~ ( x )  and f ( x )  which describe the shape of the configuration. (The 
precise shape of these functions are not determined by this approach, which is purely 
topological, but depends on the particular choice of potential V ( x ) . )  

3. Numerical results 

We have obtained the numerical results presented here by using the procedure described 
in appendix 3 for calculating the minimum energy states of the model ( 1 . 1 )  (including 
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the non-convex interaction (1.4)). We illustrate the properties of this model for 
irrational values I ,  and I ,  with the specific choice l ,  = (d3.5+45 - 2 - 4 2 ) ~  = 2.1761 
and l Z = ( ~ 3 . 5 ) r r = 5 . 8 7 7 4  (and hence S = ( 2 + \ ~ 2 - d 5 5 ) 7 ~ = 3 . 7 0 1 3 ) .  

Figure 2 shows the (free) energy per particle F S /  N as a function of the 'configur- 
ation magnetisation' M ( O S  M s N ) ,  i.e. the sequences of 0 and 1 (cf appendix 3). 
The chemical potential p has been set to zero: adding a term p(u,  - uo)  = p M  simply 
tilts the whole function FM. We observe that the function F ( M )  is apparently con- 
tinuous (as N += a), convex, and has several (sharp) corners which become minima 
of F (  M )  as p is varied. The locations c = iM/ N (or E = 1 - c )  of these minima as a 
function of p are displayed in figure 3 (here N = 5000). c(c") denotes the concentration 
of l2 ( I , )  distances in a pure I ,  ( I , )  chain; the mean distance 1 is then given by 
1 = (1 - c ) l ,  + cl, = El,  + (1 - ; ) I 2 .  We can clearly see a typical devil's staircase behaviour; 
the magnification also shown in figure 3 suggests that the staircase may be complete. 
Also, within the accuracy of our numerical computation, FM seems to be convex, since 
E(p) appears to increase monotonically. The numbers assigned to each step of the 
staircase will be explained below. 

0 4  

0 3  

2 
U 
. 

0 2  

31 

0 

MIN 

Figure 2. (Free) energy per particle F /  N as a function of the mean 'magnetisation' 
fi = M /  N or concentration E, for p = 0. 

For each state we now examine the distribution of particles within a periodicity 
interval of the potential V ( x ) :  {U, mod 2 ~ } .  Towards this end we calculate the 
integrated probability D( v )  to find a particle between 0 and v < 2 7 ~ :  

l N  
N E = ,  

D(v)=- O ( v - u , m o d 2 r ) .  (3.1) 

This function is shown in figures 4( a )  and 4(b) for the configurations { u z }  corresponding 
to the corners of F Z  (or plateaux of c ( p ) )  at M = 4 9  and M =253 or E=0.157 and 
E = 0.832, respectively. We observe that the U ,  are distributed in a finite number of 
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Figure 3. ( a )  Minimal concentration f of F ( M )  as a function of the chemical potential 
p. ( b )  Enlargement of region marked in ( a ) .  Each step is labelled with allowed values of 
p in the range (-2,000, +2,000). Associated values of q, r, s can be computed from the 
equations in appendix 2. 

bands within the interval [ 0 , 2 a ] ;  these bands correspond to the non-horizontal parts 
in the figures. In addition to these simple one- and three-band structures we show a 
more complicated 21-band structure in figure 4( c)  for E = 0.309. It is these observations 
about the band structures which lead us to the analysis of the model as described in 8 2 .  

Most of the observed minimum energy configurations are characterised by a set of 
numbers p,  q, r, s (cf § 2, figure 3). These numbers determine the total width of the 
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Figure 4. Integrated probabilities D(  U )  (see B 3 )  for ( a )  a one-band configuration, ( b )  a 
three-band configuration, and ( c )  a 21-band configuration. 

bands as well as the mean distance of the concentrations c, c. The numbers in figure 
5 are the various values of p which can be associated with these plateaux. Some of 
the values for p which are allowed according to the prediction of our topological 
theory do not appear in our actual example. This could be due to the fact that the 
total width of these bands is too large and costs too much energy. But, of course, the 
finite size ( N  < 5000) of our calculation also limits a more detailed assignment of p 
values to the plateaux. The widths of the plateaux apparently depend on the detailed 
properties of the specifically chosen potential V ( x )  and cannot be predicted by the 
analysis in 5 2. 

The numbers p ,  4,  r, s determine the rotation number w (cf equation (2.25b)) which 
is necessary in order to test the predictions about the functions a ( x )  and h ( x ) .  Note 
that there can be several choices of rotation numbers for a single configuration labelled 
by p since the mean distance (or concentration) does not depend on r and s whereas 
the winding number depends on r and s as well as p and 4. Table 1 lists all possible 
combinations of these numbers together with the corresponding values for winding 
number, concentrations and total bandwidth for IpI < 10. 

a( iw +@) (0, l} of a given configuration 
as a function of yi = w i  mod 27r. According to the predictions of 0 2, this corresponds 

First we plot the pseudo-spin variables ai 
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(01 

"---T--X 0 
Y 

Figure 5. Hull function a ( y )  for different states labelled by p .  Note the independence of 
a ( y )  on s when there are several choices, and the periodicity 2 n / K  with K = 1 (a ,  b), 2 
(c) ,  3 f d ) ,  corresponding to 1, 2 or 3 solutions, respectively (see discussion in $ 0 2  and 3). 
( a ) p = l ,  s=O;  ( b ) p = 3 , s = 2 ;  ( c ) p = 6 , s = 2 , 3 ;  ( d ) p = 9 ,  s = 2 , 5 , 8 .  

Table 1. Set of solutions to equations (A2. la)-(AZ.lc)  for I , =  n ( J 3 . 5 + J 5 - ~ ' 2 - 2 )  and 
I ,  = 7rv3.5 together with the corresponding concentrations and winding numbers (mod 27r) 
up to 1pJ < 10. 

P 9 r S w C P @ 

0 
1 
2 
2 
3 
4 

- 5  
6 
6 
7 
9 
9 
9 

1 
1 
2 
2 
2 
3 

-2 
4 
4 
5 
6 
6 
6 

0 
0 
0 
1 
1 
2 
0 
I 
3 
4 
1 
3 
5 

0 
0 
0 
1 
2 
3 
1 
2 
5 
6 
2 
5 
8 

0.3463 
0.8428 
0.4214 
0.9214 
0.7225 
0.8997 

-0.2568 
0.3613 
0.8613 
0.9263 
0.2408 
0.5742 
0.9075 

0.000 
0.843 
0.843 
0.843 
0.168 
0.599 
0.284 
0.168 
0.168 
0.484 
0.168 
0.168 
0.168 

1.000 
0.157 
0.157 
0.157 
0.832 
0.401 
0.716 
0.832 
0.832 
0.516 
0.832 
0.832 
0.832 

~ ~~ 

1.000 
0.41 
0.82 
0.82 
0.23 
0.64 
0.95 
0.47 
0.47 
0.88 
0.70 
0.70 
0.70 

to the function u ( y )  defined in equation ( 2 . 1 8 ~ )  (see equation (2.20)). Figure 5 shows 
several cases with different configurations and  winding numbers, all of them in agree- 
ment with the theory of § 2. Note that a single configuration can be described with 
different values for r and s (and hence different winding numbers) but the function 
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u ( y )  depends on p only. Remarkably, the complicated band structures can often be 
described by such a simple function a ( y ) .  We have checked several examples with p 
and q not relatively prime. In all such examples we find that u ( y )  is periodic with 
period 2 a / K  and is independent of the K solutions ( r ,  s)  to equations (2.24a, b )  (cf 
figures 5 ( c )  and ( d )  where K = 2 , 3 ,  respectively). Therefore, as discussed in § 2, the 
fundamental wavevector Q is given by equation (2.29).  

In addition the function h ( y )  is obtained by plotting 
I 

h, = 2 U, - p  1nt(wi/2a)+ is (3 .2)  
1'' 

as a function of y ,  = wi mod 2 a .  According to equation ( 2 . 2 1 ~ )  we should thus obtain 
the function f: Figure 6 shows the function h ( x )  (from which f ( x )  and g(x) can be 
derived) for the same cases as in figure 5 .  Again we notice that the shape of the 
function h does indeed only depend on p .  The predictions of the topological analysis 
(8  2) are fulfilled for the most important plateaux. For the corresponding configur- 
ations, the mere existence of these functions clearly demonstrates the finiteness of the 
fluctuations of the positions U,. 

0 

-1.c 

- 1.0 
(a1 

0 

-1 0 

, -2.0 
n 2n n 2n 

jc i  - 7 0 

4 0 1  201  - - - 4 0 ~ - - - ; - ~ - ~  

-2 0 -2 0 
O L  0 2n Y l o  0 n 2n 

Figure 6. Hull function h ( y )  for the same states as in figure 5 .  

If there is only one rational relationship between the three lengths, e.g. equation 
( 2 . 4 )  has an integer solution, then the energy curve F (  M )  looks qualitatively the same 
as in the irrational case, whereas the minimum energy configurations are now periodic 
(commensurate). A small perturbation therefore has little effect on the F ( M )  curve 
but changes the configurations quite drastically: a periodic state becomes a band 
structure. 

Finally, we show an example of rational I ,  and 12:  I ,  = 4 a / 7  = 1.7952 and 1 2 =  
1 2 ~ 1 7  = 5.3856 (and 6 = 8 ~ 1 7  = 3.5904). In this case the curve F N ( M )  has only a few 
corners with straight lines between; in the irrational case we had (infinitely) many 
corners which show up as curved lines between the more pronounced ones due to the 
finite size of the calculation. As a consequence the devil's staircase becomes harmless 



3172 S Aubry, K Fesser and A R Bishop 
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with only a few steps corresponding to those few corners. Figure 7 shows this staircase 
with no additional plateaux appearing under magnification. If we add a small number 
( 6  x to Z2 and thus destroy the property of rationality we again obtain a more 
complicated behaviour as shown in figure 8. 
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0.2 - 
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-1.5 1.0 2.5 x ~ O - ~  -1.3 -1 2 -1.1 x 1 0 - &  
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P 

Figure 7. ( a )  Minimal concentration E of F ( M )  as a function of the chemical potential 
p for rational I , ,  I , .  ( b )  Enlargement of the region marked in ( a ) .  

- 
1 0 1  

-1 0 I 5 0 1 5  3 0 x 1 0 - '  

ii 

Figure 8. Same as figure 7 ( a ) ,  but with a small perturbation on the ratio / , / I 2  (see 8 3).  

4. Conclusions 

Our major conclusion, within the modified FK model introduced in 0 1, has been that 
the presence of non-convex interactions does not in general give rise to a single first-order 
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transition (as anticipated on approximate grounds (e.g. Villain and Gordon 1980)), 
but rather results in many intermediate phases, quite probably an infinite number. It 
is important to note that our model involves competition of three lengths. According 
to some suggestions of Ruelle (1983), we might therefore have expected a structurally 
‘chaotic’ ground state, but we have not observed this. There is, however, a possibility 
of ‘marginal chaos’ in the form of ‘weak periodicity’ (Aubry 1983a), occurring either 
in the limit of large p (i.e. many bands) or in special band structures. It is also important 
to note that the locking phases correspond, surprisingly, to incommensurate values of 
c and w. In the special cases of 1,1277 and 1,1277 both rational, the ground states are 
commensurate and we find only a finite number of first-order transitions (cf figure 7 
and the discussion in § 3). For I , ,  12, 277 not rationally related there cannot exist any 
commensurate ground state. This assertion can be proved by contradiction. Assume 
we found a commensurate ground state, then there is an integer n so that U , + ,  - U ,  = L 
which is independent of i and a combination of I ,  and I,: nl, + n,lz = L. L / ~ T  is 
necessarily irrational from which we conclude that the sequence of points u , + A ,  

(mod 2 ~ )  is uniformly dense on the interval [0,277] for any i. Consequently the energy 
of this configuration is just the average of the external potential V( U )  over one period 
which is always larger than any of the configurations we have obtained. Therefore it 
cannot be a ground state. 

It is not necessarily easy to generalise our model. Nevertheless, it should be 
instructive to analyse complementary models with three competing lengths, e.g. the FK 

model extended to exclude two inequivalent periodic potentials. Also, non-Ising effects 
may modify our conclusions. For instance the devil’s staircase we observed (§  3) may 
become incomplete or we might find a mixture of this devel’s staircase and that found 
for the usual purely convex FK model (i.e. locking at commensurate values of the local 
potential ( V )  period and the mean atomic distance). In our model the interatomic 
interaction is assumed to be dominant. We note that, in the usual convex FK model, 
if the interatomic potential dominates then the domain walls are wide (on the scale 
of a lattice spacing) and thus lattice pinning is weak. In our model the locking of 
phases is not due to the periodic potential, but mostly due to the barrier potential 
which must be overcome to change the atom’s location from I ,  to I,. Relaxing the 
Ising limit will mix these influences. 

The potential barrier for changing between lengths I ,  and I ,  clearly leads us to 
anticipate the existence of many metastable states, corresponding to random distribu- 
tions of f 1  and 12.  In particular, note that when c ( p )  changes, p changes through 
arbitrarily large values (cf the hull functions in figure 6), implying large amplitude 
global rearrangements of atoms for large p .  It would also be interesting to study the 
distribution in energy of the metastable states. In any experimental situation close to 
our model, we expect relaxation times for decay to the true ground state to be very 
long and perhaps even infinite (as, is probably the case in spin glasses). We have, of 
course, not included any explicit dynamics, but we should expect that very slow 
experiments are necessary. Extrinsic impurities and defects are likely to play an 
important role in this regard. On the other hand, our results may actually be relevant 
to modelling incommensurate systems with mobile defects, at least for ground-state 
properties, since such systems present three competing length scales-the lattice 
spacing, the mean defect separation and the period of the incommensurate potential. 
Interestingly, in the ferroelectric Ba,Na Nb505, where there are intrinsic mobile vacancy 
defects (probably Na ions), locking to incommensurate structures has been observed 
(Schneck et  al 1982). 
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To the extent that our basic model is experimentally relevant without more realistic 
modifications, we should expect a ‘smeared first-order’ transition to be observed, 
accompanied by broadened satellites of the incommensurate pattern or additional 
substructure (cf neutron scattering studies of Rb2ZnBr4 (Iizumi and Gesi 1983)). High 
resolution, slow experiments might show remnant effects of the theoretically implied 
devil’s staircase, i.e. structure within the satellites. (The width should arise from the 
distribution of metastable states since the system cannot make instantaneous transitions 
between these.) The dominant modulation wavevector may still show remnants of the 
devil’s staircase if the metastable states are not too disjoint. (Theoretically, the wave- 
vector is probably very discontinuous everywhere.) 

Acknowledgments 

Two of us (SA and KF) acknowledge the hospitality of the Center for Nonlinear 
Studies, Los Alamos, where this work was begun. Work performed at Los Alamos 
was performed under the auspices of the US DOE. 

Appendix 1 

Here we describe in detail two examples of one-circle band structures which we have 
observed numerically as ground states. 

Example 1 .  One-band structure 

Figure 4(a)  shows a ground state for which the ui mod 257 are uniformly distributed 
on a unique interval [ A , B , ] .  The transformation T exchanges the intervals as shown 
in figure A l .  The interval [ A , B I ]  is translated by I, on [ A I B , ] .  The interval [BIB, ]  
is translated by l2 on [ A , A ; ] .  The assumptions of 9 2 are all fulfilled. Glueing B, and 
A2,  this transformation becomes a rotation by the length I ,  on the circle of length 

---- 
Cp. = A I B l  = A , A 2 + A z B I  + BiB,  = 2 r -  l z +  I,. 

This example corresponds to 

p = q = l  and r = s = O  

for the conditions given in 9 2. 

0 A ,  A: B; B, 2rr A 2  4rr 

Figure Al .  Schematic graph of a one-band structure. 

Example 2. Three-band structure 

There exist several possible three-band structures. The ground state which has the 
distribution of ui mod 2 r  shown in figure 3 is associated with the graph shown in 
figure A2. (Note that for didactic convenience we use a slightly modified notation 
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Figure A2. Schematic graph of a three-band structure. 

from § 2 . )  The interval [AG, ]  is translated by I ,  in [ C I D , ] .  The interval [ G I B , ]  is 
translated by l2 in [A2H2] .  The interval [ C , D , ]  is translated by I ,  in [ E , F , ] .  The 
interval [E,F,] is translated by I, in [H2B2].  The assumptions of § 2 are all fulfilled 
if these intervals are glued in the order [A ,B , ] ,  [ E , F J ,  [ C , D l ] .  The width and the 
relative positions of these intervals are easily found by solving linear equations. We 
define the parameters 

- 
A ,  = A,B,  

A , =  A,Gl = C I D ,  = E,F, = H2B2 
---- 

- - 
6, = B,C, 6 2 =  DIE,. 

By inspection of figure A2, we write 
- m= A I  + SI = I ,  

C, E ,  = A2 + a2 = I ,  

GI A ,  = 2~ - A2 = 12 

FIB,= 2~ - BIFl = 2 ~  - (6, + &+2A2)  = I ,  
- - 

which yields 

A1 = 31, - 1, A2 = 2~ - 12 

8 2  = 1 ,  + 12 - 2T. 61 = 4 - 2 1 ,  

To have non-overlapping intervals we must have 
yields 

f 1 2  < I ,  < t12 

0 < I ,  + 1, < 2T. 

and 

The total bandwidth is 

@ = A1 +2A2 = 4T-3(&-  1 1 )  

and the rotation length 6 is 

8 = A ,  +A2 = 1, + 2 ~ - 2 ( 1 2 -  1 1 )  

which corresponds to the set of integers 

p = 3  q = 2  

r = l  s = 2  

according to formulae (2.13a) and (2.16). 

A I  > 0 ,  A,> 0,  6, > 0, a2 > 0, which 
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Appendix 2 

The purpose of this appendix is to prove that, for an integer p ,  the probability P, that 
there exist two integers r and s such that with 

q(  p )  = 1 + Int( p 8 / 2 7 r )  ( A 2 . l a )  

we have 

qs - p r  = Int(plJ27r) 

and 

h t (  p12/2.rr) = Int( p l , / 2 7 r )  + I n t ( p 8 / 2 ~ ) ,  

is equal to 

( A 2 . 1  b ) 

( A 2 . l c )  

( A 2 . 2 )  3 " l  
7r n 

P = y  7 - 0 . 3 6 5 3 8 .  

(Independent of 8, 1, providing these are not rationally related to 27r.) Consequently 
the sequence of p i  such that it is possible to find q, r, s fulfilling ( A 2 . 1 )  is injni te .  In 
addition we prove that the sequence of points ( p i  S/27r mod 1 ,  p i  1,/27r mod 1 )  is 
uniformly dense in the triangle ( ( O , O ) ,  (0, l ) ,  ( 1 , O ) ) .  

Before proving these results, we make some preliminary remarks. 

Remark  1 .  Let be m, n, k be three given integers (possibly equal) and p a random 
integer. The events 

(i) p divisible by m, 
(ii) q ( p )  divisible by n, 
(iii) Int p l1 /27r  divisible by k, 

are independent. 

Proo$ The probability for an integer p to be divisible by m is l / m .  We first show that 
the probability for q ( p )  to be divisible by n is l / n .  Indeed q ( p )  is divisible by n when 
there exists an integer j such that 

q = j n  = 1 + Int(pS/Zr) .  ( A 2 . 3 ~ )  

This condition is equivalent to 

j n - l < p 8 / 2 7 r < j n  (A2.3b) 

or 

1 Pa 
n 27rn 

I - -<-modl<l .  ( A 2 . 3 ~ )  

Since 8 /27rn  is an irrational number the sequence p8/27rn mod 1 is uniformly dense 
on [0, 1 1 .  Then the probability that ( A 2 . 3 )  be fulfilled is l / n .  The same result is 
obtained for the conditional probability of the event q( p )  being divisible by n assuming 
that p is divisible by m. We first have to reproduce the same argument with p = mp' 
and to use the fact that m8/27rn is also an irrational number. Consequently the events 
(i) and (ii) are independent. In the same way, we prove that the events (i) and (iii) 
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are independent. We now prove that the event (iii) is independent of the unique event 
(ii) (and also of the simultaneous event ( i )  and (ii)). Int(pl1/2.rr) is divisible by k 
when we have 

Ph 1 
0<-modi<-. 

2 rrk k 

q is divisible by n when ( A 2 . 3 ~ )  is fulfilled. Since S/n and l,/k are not rationally 
related to 2rr the sequence of points (pS/2rrn mod 1, plJ2rrk mod 1) is uniformly 
dense in the square [0,1] x[O, 11. Consequently, the probability to fulfil both events 
(ii) and (iii) is l/nk, the product of the separate probabilities of these events. The 
same result holds for the conditional probability of (ii) and (iii) if (i) holds. This 
proves that the events (i), (ii) and (iii) are independent. 

Remark 2. The probability that p and q be relatively prime is 6/7r2. 

ProoJ: The event p (or q )  divisible by a prime number p1 is independent of the event 
p (or q )  divisible by another prime number p2 because both conditions are equivalent 
to the unique condition: p (or q )  divisible by the product pIp2 .  To be relatively prime, 
a necessary and sufficient condition for p and q is that they are not both divisible by 
any prime number pi. This probability is (1 - l / p f ) .  Then the probability that p and 
q be relatively prime is the product 

Pi 

(A2.5) 

over all prime numbers. A well known method due to Riemann allows us to calculate 
this infinite product. We calculate 1 / Q  which can be written 

(A2.6) 

The last term in (A2.6) contains all the possible products p;lp;2. . . p y ~  . . . with ni = 
0, 1 ,2 , .  . . . These products are the unique decompositions into prime numbers of the 
series of integers. Then, we find 

Using these two remarks, we can now calculate the probability that (A2.lb) be 
fulfilled. This condition is equivalent to requiring that Int(p11/2rr) be a multiple of 
the largest common divisor of p and q. The probability that this number takes a given 
value m is equal to the product of the probability, l /m2,  that p and q be both divisible 
by m multiplied by the independent probability, 6/.rr2, that the quotients of p and q 
by m be relatively prime. The probability of the independent events that m also divides 
Int(p1,) is (1/m2)(6/.rr2)( l / m ) .  Then the probability that (A2.3b) be fulfilled is equal 
to the sum of the probabilities of all the (excluded) events for which (A2.lb) is fulfilled 
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with the largest common divisor m, i.e. 

6 ' O l  
7r2 m 

P=- 3. 

The second event ( A 2 . l ~ )  is equivalent to 

PI1 Pa -mod 1 +- mod 1 < 1. 
2 7  27r ('42.9) 

It is fulfilled with probability 4 since the sequence (p11/27r mod 1, p6/27r mod 1 )  is 
uniformly dense in the square [0,1] x[O, 13. Using the same arguments as in remark 
1,  it is easy to prove that the event ( A 2 . 1 ~ )  is independent of the divisibility events of 
p, q and Int(pIl/27r) by any integers used for finding the probability for the event 
(A2.lb).  Consequently, the probability of fulfilling both (A2.lb) and ( A 2 . l ~ )  is the 
product of the two independent probabilities for (A2.1 b)  and ( A 2 . 1 ~ )  which yields 
(A2.2). The final assertion of uniform density is an obvious consequence of this 
independence. 

Appendix 3 

Here we derive the simple recursion relation for calculating the ground state of the 
free energy ( 1 . 1 )  (with non-convex interaction (1.4)). Since the distance between un+, 
and U, can only be I, or I2 = I ,  + 6 we can write, for a chain with N particles, 

(A3.1) 

with ai E (0, 1). The Ising-like variables ai denote whether the distance U,,+, - U, is I, or 
I,. If we introduce a magnetisation 

N 

M = C  a, O G M S N  
f l= l  

(A3.2) 

for the sequence uo, U,, . . . , uN, then the energy of a chain with N +  1 particles becomes 

if a N + I  = O  (A3.3a) F ~ I  = F ;  + V( u0+ MS + ( N  + 1 ) I , )  

or 

F r l =  F ~ - , + V ( u o + M 6 + ( N + 1 ) I l )  if a N + 1  = 1. (A3.3b) 

Note that the additional term is the same in both cases (A3.3a, b) ,  which now determine 
a simple recursion relation for calculating the states of lowest energy, namely 

where either uN+, = O  or 1 is taken according to which energy ( F ;  or FE-,) is the 
lowest. The sequences for F f + '  and FE:: are trivial. uo is an arbitrary initial phase 
and is chosen as uo = 0. (Other choices of uo affect only initial iteration transients.) 

The chemical potential p is set to zero for these calculations. If we want to obtain 
the ground state for a different value of p we simply add -pM to F E  for all M and 
search for the new minimum. 
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